


Alkylphenol Ethoxylate Replacement for Emulsion Polymerization

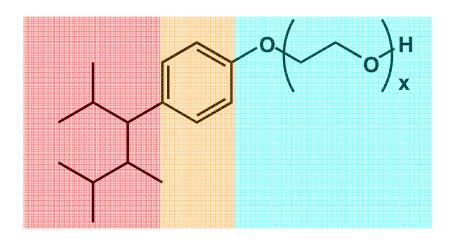
Kip Sharp, Melanie Sharp, and Lee Matheson Sasol North America, Westlake, LA

January 31, 2008

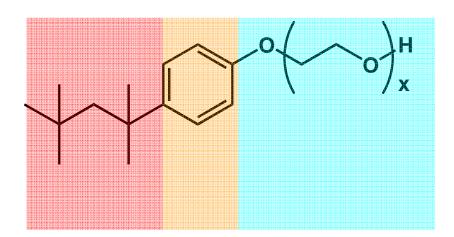




### **Outline**


- Introduction
- New Alkylphenol Ethoxylate Alternatives (APEOs)
- Example Emulsion Polymerization
- Analytical Analysis
- Conclusions
- Acknowledgements




## Introduction



## APEOs' Representative Chemical Structures



Nonylphenol Ethoxylate (NPE)



Octylphenol Ethoxylate (OPE)



## **APEO Advantages**

- Excellent emulsification properties
- Good versatility useful in a variety of emulsion polymerization types
- Branched structure yields lower solidification points and less gelling than traditional alcohol ethoxylate/ water mixtures



## **APEO** Advantages

- Low levels of free un-ethoxylated phenol; low VOC.
- Narrower range EO adduct distribution compared to base-catalyzed primary alcohol ethoxylates
- Historically APEOs have maintained a lower cost compared to alcohol ethoxylates (AEs)



## **APEO Disadvantages**

- Biodegradation of APEOs is slower than that of other AEs
- •As degradation proceeds, the resulting metabolites are more surface active and more toxic than the starting intact APEO structure
- Growing attention on perceived environmental properties of APEOs



## **APEO Disadvantages**

- Increasing petroleum prices
- Limited availability of propylene trimer
- Pressure on historical cost/performance advantages



## **Current APEO Alternatives**



#### **Current APEO Alternatives**

- Linear Alcohol Ethoxylates (LAEs)
- Oxo-Alcohol Ethoxylates
- Secondary Alcohol Ethoxylates



## **Linear Alcohol Ethoxylates**

- Advantages
  - Excellent Biodegradation
  - Competitive Costs

- Disadvantages
  - Lack of Branching
  - Increased Pour Points
  - Increased gel phases

**Linear Alcohol Ethoxylate** 



## Oxo Alcohol Ethoxylates

- Advantages
  - Lower Pour Points
  - Fewer Gel Phases
  - Wide Variety of Even/Odd Alcohols

- Disadvantages
  - May be Slower to Derivatize

$$O(O)_{X}^{H}$$

**Oxo Alcohol Ethoxylate** 

$$O(C_0)^{\mathsf{H}}$$

**Isotridecyl Alcohol Ethoxylate** 



## Secondary Alcohol Ethoxylates

- Advantages
  - Little to No Gel Phases
  - Low Pour Points

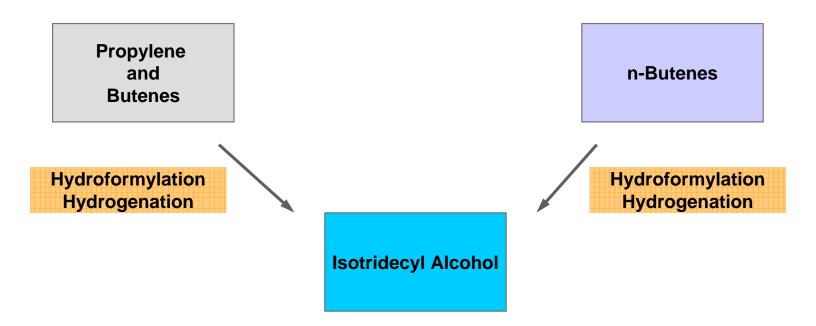
- Disadvantages
  - Typically Higher Prices Since More Difficult to Produce

**Secondary Alcohol Ethoxylate** 



## **New APEO Alternatives**




#### **New APEO Alternatives**

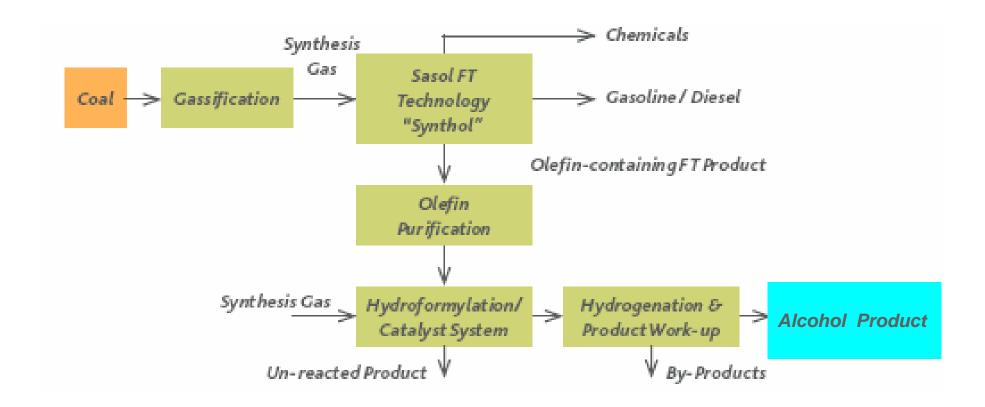
- Isotridecyl Alcohol Based on n-Butene
- Fischer-Tropsch (FT) Based Oxo Alcohols
- Use of Narrow Range Ethoxylation Catalyst



## Isotridecyl Alcohol Production

- Oxo Alcohol
- High Degree of Branching
- Compact Hydrophobe






## Isotridecyl Alcohols Comparison

| Isotridecyl Alcohol       | Based on C3-<br>C4 Olefin | Based on n-<br>Butene |
|---------------------------|---------------------------|-----------------------|
| Carbon Chain Distribution |                           |                       |
| C11OH                     | 7%                        |                       |
| C12OH                     | 30%                       |                       |
| C13OH                     | (60%)                     | (100%)                |
| C14OH                     | 3%                        |                       |
| Average Carbon Chain      | 12.7                      | 13                    |
| Molecular Weight          | 197                       | 201                   |
| Hydroxyl # (mg KOH/gm)    | 285                       | 279                   |



#### FT-Oxo Alcohol



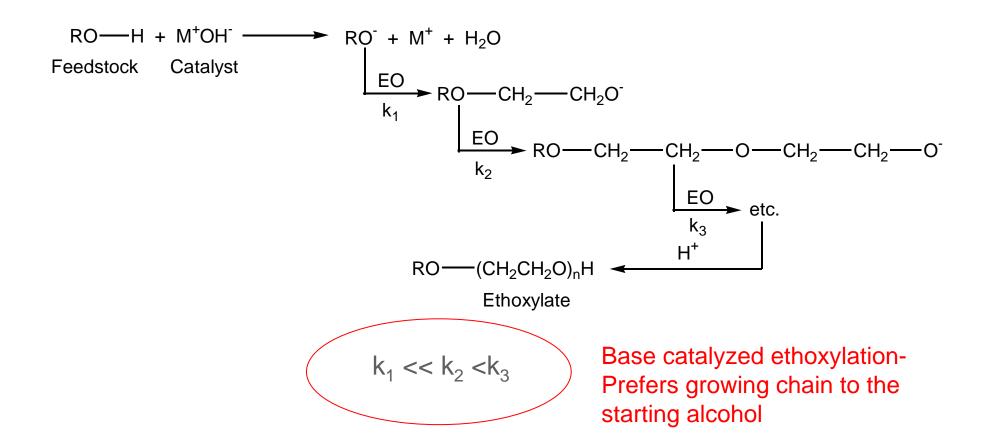


### FT-Oxo Alcohol

- Linear and Branched Blend
- Unique Branching
- Improved Derivatization (i.e., Ethoxylation)
- Excellent Biodegradation

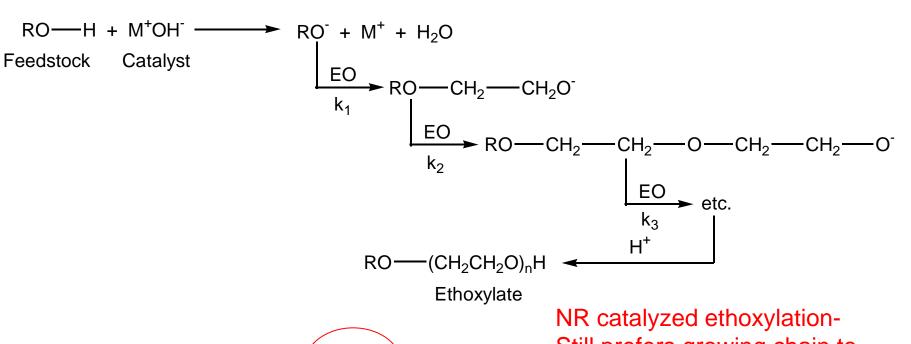
**FT-Oxo Alcohol** 

## Oxo Alcohol Comparison


|                                               | FT Oxo<br>Alcohol   | Oxo Alcohol | Modified Oxo Alcohol |
|-----------------------------------------------|---------------------|-------------|----------------------|
| Olefin Feed                                   | Fischer-<br>Tropsch | Linear      | Linear               |
| Hydroformylation Technology                   | Davy                | Un-mod Co   | SHOP                 |
| Molecular Weight                              | 194                 | 194         | 194                  |
| Carbon Chain Distribution                     |                     |             |                      |
| C12OH                                         | 50                  | 42          | 48                   |
| С13ОН                                         | 47                  | 56          | 51                   |
| HO-CH2-(CH2)n-CH3 (linear alcohol)            | 50%                 | 45%         | 80%                  |
| Total sum of branched alcohols                | 50%                 | 55%         | 20%                  |
| HO-CH2-CHR-R' (C2 branched alcohols)          | 5%                  | 55%         | 20%                  |
| HO-CH2-CH2-R (other branching position)       | 95%                 | 45%         | 80%                  |
| Mono methyl alcohol isomers                   | 30%                 | 14%         | 8%                   |
| Other primary alcohol isomers                 | 20%                 | <1%         | <1%                  |
| Quaternary Carbons (Detection Limit 0.3-0.5%) | n.d.                | n.d.        | n.d.                 |
| Total Alcohol                                 | 100%                | 100%        | 100%                 |



## **Narrow Range Ethoxylation**



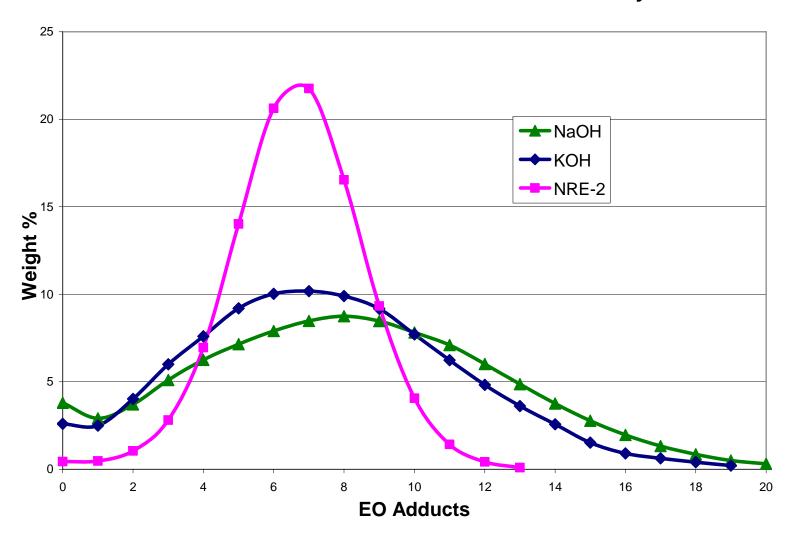

## Ethoxylation – Base Catalyzed





## Ethoxylation – Narrow Range Catalyst




Still prefers growing chain to the starting alcohol but to a much lesser degree

LOWER FREE ALOCHOL



## **EO** Adduct Distribution Catalyst Comparison

#### **EO Adduct Distributions for 1216 - 7 Mole Ethoxylates**





# Comparison of 1216CO-7 Ethoxylate Prepared Using Different Catalysts

| Property                     | КОН  | NRE  |
|------------------------------|------|------|
| Cloud Point (°C at 1% Water) | 54   | 59   |
| Free Alcohol (wt %)          | 2.39 | 0.37 |
| PEG content (wt %)           | 1.47 | 0.12 |
| Viscosity at °40 (cSt)       | 27.3 | 24.8 |
| Melting Point (°C)           | 3.8  | 12.8 |
| APHA Color at 60°C           | 15   | 8    |

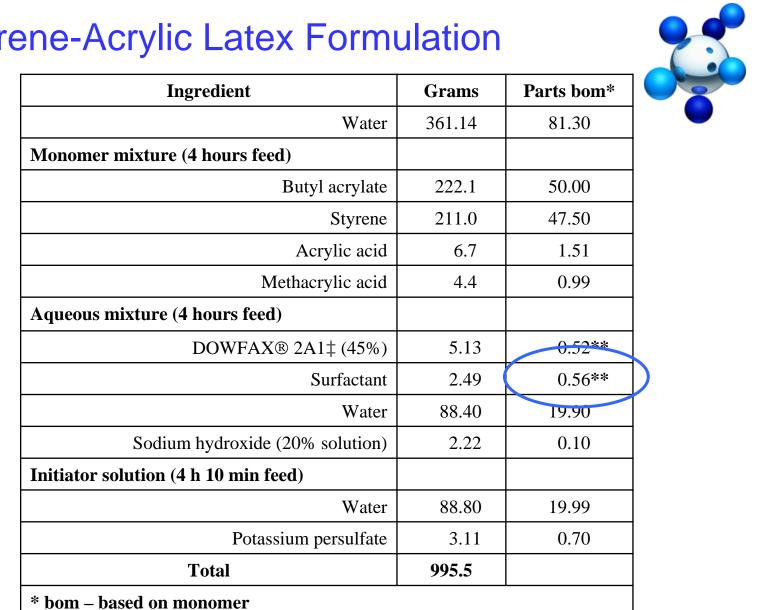


## Narrow Range Ethoxylation - Appearance



0.10% and 0.50% by Weight of Narrow Range Catalyst




0.10% and 0.50% by Weight of 45% KOH Catalyst

- Cetearyl alcohol 40 mole ethoxylates
- •Reaction temperature was 180 °C
- •Picture at ~60°C



## **Model Emulsion Polymerization**

## Styrene-Acrylic Latex Formulation



\*\* based on active species

<sup>‡</sup>from the Dow Chemical Company

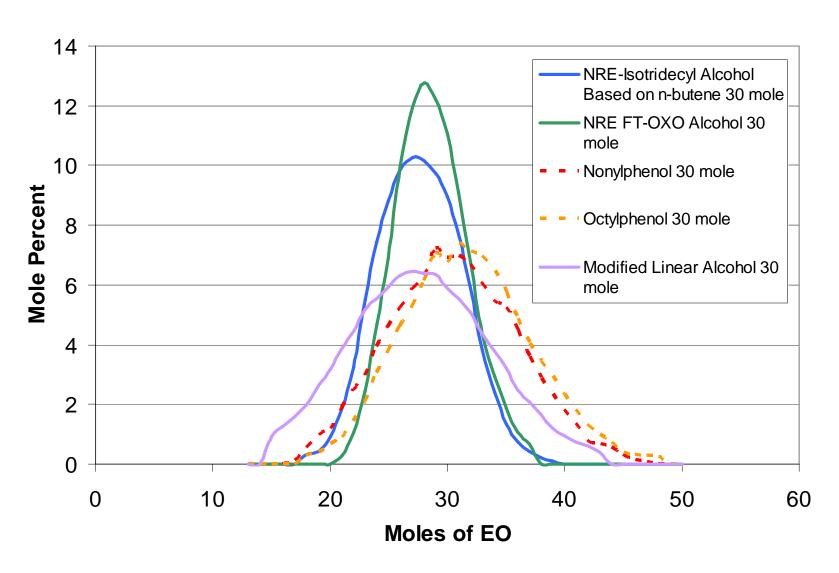
## Comparative Properties of Nonionic Surfactants Studied



| Surfactant                                                           | Moles<br>of EO | Active<br>Content<br>% | Cloud<br>point<br>°C | HLB  | Appearance                        |  |
|----------------------------------------------------------------------|----------------|------------------------|----------------------|------|-----------------------------------|--|
| Narrow Range n-<br>Butene-based<br>Isotridecyl Alcohol<br>Ethoxylate | 30             | 100                    | 76                   | 17.3 | White Solid                       |  |
| Narrow Range FT-Oxo<br>Alcohol Ethoxylate                            | 30             | 100                    | 75                   | 17.5 | White Solid                       |  |
| Nonylphenol<br>Ethoxylate                                            | 30             | 100                    | 74                   | 17.1 | White Solid                       |  |
| Octylphenol Ethoxylate                                               | 30             | 70                     | 72                   | 17.3 | Pale Yellow Liquid                |  |
| Secondary Alcohol<br>Ethoxylate                                      | 30             | 100                    | 74                   | 17.4 | White Solid                       |  |
| Modified Linear<br>Alcohol Ethoxylate                                | 30             | 70                     | 77                   | 17.5 | Water-White to Pale Yellow Liquid |  |



## **Analytical Results**




## Analysis of the Latex

- MALDI-TOF (Matrix Assisted Laser Desorption Ionization and Time-of-Flight Mass Spectrometry)
- Solids
- Conversion
- Wet Coagulum
- Particle Size
- Minimum Film Forming Temperature (MFFT)



### **EO Distribution via MALDI-TOF**





## **Latex Properties**

| Nonionic Surfactant                                                 | Solids<br>(%) | Wet<br>Coagulum<br>(%) | Conversion (%) | Particle<br>Size<br>(nm) | MFFT<br>(°C) |
|---------------------------------------------------------------------|---------------|------------------------|----------------|--------------------------|--------------|
| Narrow Range Isotridecyl<br>Alcohol Based on n<br>butene Ethoxylate | 45.1          | 0.07                   | 99.2           | 343                      | 19.8         |
| Narrow Range FT-Oxo<br>Alcohol Ethoxylate                           | 45.2          | 0.03                   | 99.4           | 313                      | 22.4         |
| Octylphenol Ethoxylate                                              | 45.0          | 0.07                   | 98.9           | 385                      | 20.0         |
| Nonyl Phenol Ethoxylate                                             | 45.3          | 0.18                   | 99.6           | 269                      | 18.8         |
| Secondary Alcohol<br>Ethoxylate                                     | 45.1          | 0.21                   | 99.3           | 317                      | 17.9         |
| Modified Linear Alcohol<br>Ethoxylate                               | 45.2          | 0.40                   | 99.3           | 359                      | 19.6         |



#### Conclusions

- APEOs under pressure due to perceived environmental concerns and increasing production costs
- Marketplace seeking cost-effective APEO alternatives
- Current technologies are acceptable, however...
- New narrow range ethoxylates based on new alcohol feed stocks have improved properties making them equal to or more effective than APEOs in emulsion polymerization



## Acknowledgements

- Samantha Ingalls
- •The University of Southern Mississippi



# Thank you for your attention