Contents

1. Alumina production process .. 4

2. PURALOX®/CATALOX® ... 5
 2.1 High-purity Aluminas ... 5
 2.2 Advantages of PURALOX® and CATALOX® 6
 2.3 PURALOX® and CATALOX® for fluid bed application 7
 2.4 Calcination .. 7
 2.5 Doped Aluminas ... 9

3. Technical Data .. 10
 3.1 High-density Aluminas .. 10
 3.2 High- and medium-porosity Aluminas 10

4. Product information .. 12
 4.1 Storage and transfer ... 12
 4.2 Safety and handling ... 12
 4.3 Technical support ... 12

5. Certifications .. 14

6. Analytical methods ... 14
 6.1 Element analysis ... 14
 6.2 Crystallite type and average crystalline phases 14
 6.3 Particle size distribution .. 14
 6.4 Surface area analysis ... 14
 6.5 Pore volume and pore size distribution 14
 6.6 Differential scanning calorimetry (DSC) 14
About us

Sasol’s Performance Chemicals business unit markets a broad portfolio of organic and inorganic commodity and speciality chemicals. Our business employs about 1300 people in four key business divisions: Organics, Inorganics, Wax and PCASG (Phenolics, Carbon, Ammonia and Speciality Gases). Our offices in 18 countries serve customers around the world with a multi-faceted portfolio of state-of-the-art chemical products and solutions for a wide range of applications and industries.

Our key products include surfactants, surfactant intermediates, fatty alcohols, linear alkyl benzene (LAB), short-chain linear alpha olefins, ethylene, mineral oil-based and synthetic paraffin waxes, cresylic acids, high-quality carbon solutions as well as high-purity and ultra-high-purity alumina. Our speciality gases sub-division supplies its customers with high-quality ammonia, hydrogen and CO₂, as well as liquid nitrogen, liquid argon, krypton and xenon gases.

Our products are as individual as the industrial applications they serve, with tailor-made solutions creating real business value for customers. Ongoing research activities result in a continuous stream of innovative product concepts that help our customers position themselves successfully in future markets.

Our products are used in countless applications in our daily lives to add value, security and comfort. Typical examples include detergents, cleaning agents, personal care, construction, paints and coatings, leather and metal processing, hot-melt adhesives, bitumen modification and catalyst support for automotive catalysts and other diverse specialty applications including oil and gas recovery, aroma production, plastic stabilisation, and polymer production. Every day, our researchers explore ways to improve our products and develop innovations that improve the quality of people’s lives.
Sasol Inorganics produces high- and ultra-high-purity aluminas primarily through synthetic aluminum alkoxide processing routes. The alumina is produced either as co-product with synthetic linear alcohols (Ziegler method) or directly from aluminum metal (on-purpose route). Several production steps must be completed to produce the different alumina-based products. In the first step, an aqueous intermediate (alumina slurry) is produced, which is further tailored in the subsequent processing steps to obtain the various products sold on the market. These can be alumina hydrates, calcined aluminas and doped versions thereof.

1. Alumina production process

![Figure 1: Schematic for the alumina manufacturing process](image)
2. PURALOX®/CATALOX®

2.1 High-purity Aluminas

PURALOX® and CATALOX® are the trademarks for the aluminium oxides derived from the controlled activation of PURAL® and CATAPAL® high-purity alumina hydrates. PURAL® and CATAPAL® are the respective trademarks of synthetic, high-purity boehmite (AlOOH) and bayerite (Al(OH)₃), manufactured in Brunsbüttel, Germany, and Lake Charles, USA. The proprietary process used in the preparation of these high-purity aluminium oxides allows Sasol to control many important physical properties and hence “tailor-make” a product for your needs. Both PURALOX® and CATALOX® are available as white, free flowing powders with high-purity and consistency. Due to the precisely controlled processing conditions during and after manufacturing these aluminium oxides, PURALOX® and CATALOX® make excellent starting materials for the catalyst industry. They provide excellent specific catalytic activities, high surface area stability, and low attrition loss.

PURALOX® and CATALOX® are arguably the best starting materials for the catalyst industry where consistency and a stable nature of the support is highly desired. These characteristics are of great importance for fluid and slurry bed applications. Due to their high thermal stability, PURALOX® and CATALOX® are widely used raw materials for washcoat formulations in environmental emission-control catalysts. Recent developments have found other suitable uses for these materials in applications outside catalysis such as polishing, chromatography, adsorbents and gas separation.
2.2 Advantages of PURALOX® and CATALOX®

Unlike other alumina manufacturing processes which use less pure bauxite derivatives as a starting material, Sasol has pioneered a process based on aluminium alkoxide which produces synthetic alumina hydrates of high purity. Examples of some trace impurities are shown in table 1. Sasol produces aluminium oxides with a wide range of possible particle size distributions (figure 2). The range of possible average particle sizes stretches from 8 micrometers to 2.5 millimeters. Other pore size distributions are available on request.

Dry milled versions of our alumina are available under the tradename PURALOX® UF and CATALOX® UF as well. These ultra fine materials comprise mean particle sizes in the range of typically 2–6 μm, which can be tailored upon customer request.

Ultra high-purity grade (PURALOX® UHPA) are available upon request.

<table>
<thead>
<tr>
<th>Impurity</th>
<th>ppm (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td><20</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>50–100</td>
</tr>
<tr>
<td>SiO₂</td>
<td>50–120</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Impurity</th>
<th>ppm (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>1</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>3</td>
</tr>
<tr>
<td>SiO₂</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 2
2.3 PURALOX® and CATALOX® for fluid bed application

The unique ability of Sasol to adjust certain physical properties makes the aluminas perfect for a variety of applications. For example, fluid-bed applications demand for rather coarse aluminas that also exhibit a high level of attrition resistance. Our PURALOX® SCCa and CATALOX® SCCa series is optimized to meet these requirements. Figure 3 shows a typical particle size distribution. Other ranges are also available upon request.

2.4 Calcination

The final crystalline phase and physical properties of the alumina depend on the physical properties of the starting material as well as the calcination process. Our calcined aluminas are predominantly based on high-purity boehmite as the starting alumina hydrate. Typical calcination temperatures of the boehmite lie within 600–1000°C. Applying such temperatures, the physically and chemically bound water is removed, transforming the hydrate into an oxide. High temperature calcination leading to α-Alumina can also be applied.
The physical properties of the aluminum oxides are to a large extent adjusted at the stage of the corresponding hydrates by varying their crystallite size and shape. This way, aluminas with tailored porosities are accessible, ranging from high-density to high-porosity materials. These two border cases are illustrated in Figure 5.

Properties such as the crystalline phase, surface area and porosity can be altered significantly by varying the calcination process. Figure 6 shows a graphic representation of the relationship between the surface area, pore volume and average pore radius. Depending on the physical characteristics of the initial alumina hydrate Sasol is able to prepare aluminum oxides with various pore volumes.

Figure 5: Electron tomography of a) high-density and b) high-porosity aluminas showing different crystallite arrangements.

Figure 6: Alumina grades with different porosities.
2.5 Doped Aluminas

Sasol aluminas are also available as doped or even multi-doped versions (e.g. La, Ce, Ti, Zr). The resulting interplay of well-defined physical properties and chemical modifications is a further step towards optimized support materials for various applications like emission control or refinery catalysts. As an example, the addition of lanthanum-oxide improves the thermostability of the base alumina as it can be seen in figure 8.

More details about doped aluminas can be found in our “Sasol Doped Aluminas” brochure.

Figure 7: SEM-EDX illustration of a La-doped alumina

Figure 8: Thermostability of pure, La- and Ba-doped aluminas
3. Technical Data

3.1 High-density Aluminas

<table>
<thead>
<tr>
<th>Typical chemical and physical properties</th>
<th>PURALOX®/CATALOX® SBa series</th>
<th>PURALOX®/CATALOX® SCFa series</th>
<th>PURALOX®/CATALOX® SCCa series</th>
<th>PURALOX® SCFa-140 L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ [%]</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>95</td>
</tr>
<tr>
<td>Na₂O [%]</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>La₂O₃ [%]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>L.O.I. [%]</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Loose bulk density [g/l]</td>
<td>500–800</td>
<td>500–800</td>
<td>600–850</td>
<td>500–700</td>
</tr>
<tr>
<td>Particle size (d₅₀) [µm]</td>
<td>45</td>
<td>25</td>
<td>60–150*</td>
<td>30</td>
</tr>
<tr>
<td>Range of s. a. (BET)** [m²/g]</td>
<td>90–210</td>
<td>90–210</td>
<td>90–210</td>
<td>140</td>
</tr>
<tr>
<td>Pore volume [ml/g]</td>
<td>0.35–0.50</td>
<td>0.35–0.50</td>
<td>0.35–0.50</td>
<td>0.5</td>
</tr>
<tr>
<td>Pore radius [nm]</td>
<td>4–10</td>
<td>4–10</td>
<td>4–10</td>
<td>8</td>
</tr>
<tr>
<td>Thermal stability:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface area: 24h/1100°C [m²/g]</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>Surface area: 24h/1200°C [m²/g]</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>40</td>
</tr>
</tbody>
</table>

Further specialty grades are available upon request.

Analytical methods see page 14.

Chemical purity: C: 0.05%, SiO₂: 0.01–0.015%, Fe₂O₃: 0.005–0.015%, TiO₂: 0.01–0.30%

* Figures show the range of particle size distribution (d₅₀) available upon request.

** Figures show the range of surface areas (+/- 10m²/g) available on request.

3.2 High- and medium-porosity Aluminas

<table>
<thead>
<tr>
<th>Typical chemical and physical properties</th>
<th>CATALOX® HTa HTFa 101</th>
<th>PURALOX® TH 100/150</th>
<th>PURALOX® TM 100/150</th>
<th>PURALOX® TH 100/150 L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃ [%]</td>
<td>96</td>
<td>98</td>
<td>98</td>
<td>96</td>
</tr>
<tr>
<td>Na₂O [%]</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>La₂O₃ [%]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>L.O.I. [%]</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Loose bulk density [g/l]</td>
<td>200–350</td>
<td>300–500</td>
<td>300–500</td>
<td>300–500</td>
</tr>
<tr>
<td>Particle size (d₅₀) [µm]</td>
<td>15–40 (HTa) 5–10 (HTFa)</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Range of s. a. (BET)** [m²/g]</td>
<td>75–115</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Pore volume [ml/g]</td>
<td>0.70</td>
<td>0.8–1.1</td>
<td>0.7–1.0</td>
<td>0.8–1.0</td>
</tr>
<tr>
<td>Pore radius [nm]</td>
<td>12–17</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Thermal stability:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface area: 24h/1100°C [m²/g]</td>
<td>40</td>
<td>80</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>Surface area: 24h/1200°C [m²/g]</td>
<td>5</td>
<td>20</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

* Figures show the range of particle size distribution (d₅₀) available upon request.

** Figures show the range of surface areas (+/- 10m²/g) available on request.

Further specialty grades are available upon request.

Analytical methods see page 14.
4. Product information

4.1 Storage and transfer

PURALOX® and CATALOX® aluminas are dry, pure aluminium oxides, however, since all aluminas adsorb atmospheric moisture, facilities should be designed to avoid excessive exposure to moist air. By excluding moisture from the storage of alumina, shelf life is extended. PURALOX® and CATALOX® are abrasive materials. Therefore, handling and storage equipment should be abrasion resistant carbon steel, aluminium or polypropylene-lined steel.

4.2 Safety and handling

PURALOX® and CATALOX® aluminas are classified as a non-toxic, non-flammable nuisance dust. Exposure to high concentrations of dust may cause physical irritation. Repeated or prolonged exposure with skin may result in dryness and irritation. Handling procedures should be designed to minimize inhalation and skin exposure. Normal good housekeeping and operating procedures should ensure personnel safety. For doped aluminas please check the corresponding material data safety sheet.

4.3 Technical support

Sasol is committed to customer satisfaction and we offer a full range of technical support to complement the products. Technical sales and support is available worldwide to help you choose the right alumina for your end use, as well as to provide guidance on the aluminas’ safe and efficient handling. The products described in this brochure are small indications of our capability. We look forward to discussing specific technical requirements with you in detail so that together we can develop unique products for your application.
5. Certifications

All Sasol Performance Chemicals locations worldwide are certified to DIN ISO 9001/14001 and to OHSAS 18001 standards (Occupational, Health and Safety Assessment Series), and the German plants additionally comply with EMAS III (Eco Management and Audit Scheme).

Our production sites operate according to an internationally recognised, integrated quality, environmental and safety management system that has been established at the sites for many years.

6. Analytical methods

6.1 Element analysis
Alumina powder is quantitatively brought into solution by using acids and then analyzed by ICP, atomic emission. Additionally, X-ray fluorescence spectroscopy is used.

6.2 Crystallite type and average crystalline phases
Powdered samples of the alumina are analyzed by using X-Ray Diffractometry (XRD) on either a Siemens D5000 or a Philips X’Pert diffractometer. The resulting diffractogram enables the laboratory to identify the crystal structure of the material.

6.3 Particle size distribution
The particle size distribution of alumina may be measured by various instruments, namely, Cilas Granulometer 1064 supplied by Quantachrome, Malvern Mastersizer or Luftstrahlsieb (air sieve) supplied by Alpine.

6.4 Surface area analysis
The surface area of the alumina is measured by using an instrument supplied by Quantachrome (Nova series) or by Micromeritics (Gemini series). The method entails low temperature adsorption of nitrogen at the BET region of the adsorption isotherm.

6.5 Pore volume and pore size distribution
The boehmite is first calcined at 550°C for three hours in preparation for analysis. The porosity is measured by nitrogen desorption using Autosorb instruments supplied by Quantachrome.

6.6 Differential scanning calorimetry (DSC)
Netzsch STA 449C Jupiter, Setaram 92 or Perkin Elmer instruments may be used with a selected heating rate to obtain the exothermic and endothermic transitions of alumina. Additional test methods are available for other physical properties upon request.
High-purity Calcined Aluminas
At your service

Sasol Performance Chemicals
Inorganics and Catalysts
Anckelmannsplatz 1, 20537 Hamburg, Germany
Telephone +49 40 63684 1245 Fax +49 40 63684 3626
inorganic@de.sasol.com www.sasolalumina.com

Sasol Germany GmbH
Anckelmannsplatz 1, 20537 Hamburg, Germany
Telephone +49 40 63684 1245 Fax +49 40 63684 3626
inorganic@de.sasol.com www.sasolgermany.de

Sasol Chemicals North America LLC
900 Threadneedle, Suite 100, PO Box 19029, Houston, Texas 77224-9029, USA
Telephone +1 281 588 3406 Fax +1 281 588 3067
info@us.sasol.com www.sasolnorthamerica.com

Sasol Japan KK
P.O. Box 46 St. Luke’s Tower 35 F, 8-1 Akashicho Chuo-ku,
Tokyo 104-6591, Japan
Telephone +81 (3) 3248 6711 Fax +81 (3) 3248 6715
adm@sasoljapan.com

www.sasolalumina.com www.sasol.com

All registered trademarks displayed in this brochure are the property of the Sasol Group of Companies. Users of this brochure are not permitted to use these trademarks without the prior written consent of their proprietor. All rights not expressly granted are reserved.

This information is based on our present knowledge and experience. We reserve the right to make any changes as a result of technological progress or developments. This information implies no liability or other legal responsibility on our part, including with regard to existing third party patent rights. In particular, no guarantee or warranty of properties in the legal sense is implied. The customer is not exempted from the obligation to conduct careful inspection and testing of incoming goods. Reference to trademarks used by other companies is neither a recommendation, nor should it give the impression that products of other companies cannot be used. All our business transactions are governed exclusively by our General Business Conditions.